Exercise 1.36

(a) A cube of osmium metal 1.500 cm on a side has a mass of 76.31 g at $25^{\circ} \mathrm{C}$. What is its density in $\mathrm{g} / \mathrm{cm}^{3}$ at this temperature? (b) The density of titanium metal is $4.51 \mathrm{~g} / \mathrm{cm}^{3}$ at $25^{\circ} \mathrm{C}$. What mass of titanium displaces 125.0 mL of water at $25^{\circ} \mathrm{C}$? (c) The density of benzene at $15{ }^{\circ} \mathrm{C}$ is $0.8787 \mathrm{~g} / \mathrm{mL}$. Calculate the mass of 0.1500 L of benzene at this temperature.

Solution

Part (a)
The density of osmium is

$$
\text { density }=\frac{\text { mass }}{\text { volume }}=\frac{76.31 \mathrm{~g}}{(1.500 \mathrm{~cm})^{3}} \approx 22.61 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} .
$$

Part (b)
Since $1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$, the mass of titanium is

$$
\text { mass }=\text { density } \times \text { volume }=4.51 \frac{\mathrm{~g}}{\mathrm{~cm}^{5}} \times 125.0 \mathrm{~cm}^{\text {n }} \approx 564 \mathrm{~g} .
$$

Part (c)

Since $1 \mathrm{~L}=1000 \mathrm{~mL}, 0.1500 \mathrm{~L}=150.0 \mathrm{~mL}$.

$$
\text { mass }=\text { density } \times \text { volume }=0.8787 \frac{\mathrm{~g}}{\mathrm{nt}} \times 150.0 \mathrm{~mL} \approx 131.8 \mathrm{~g}
$$

